Basis Selection for Wavelet Regression

نویسندگان

  • Kevin R. Wheeler
  • Atam P. Dhawan
چکیده

A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using crossvalidation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled flmctions widely used in the wavelet regression literature. The results of the rcmthod are contrasted with other published methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixing of Cycle Slips in Dual-Frequency GPS Phase Observables using Discrete Wavelet Transforms

The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced a method based on different combinations of GPS data together with Kalman filter to solve the problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet transforms. For...

متن کامل

Note for Alan’s Class

Wavelets have proven to be immensely useful for signal analysis and representation [7]. Various dictionaries of wavelets have been designed for different types of signals or function spaces [3, 13]. Two key factors underlying the successes of wavelets are the sparsity of the representation and the efficiency of the analysis. Specifically, a signal can typically be represented by a linear superp...

متن کامل

Wavelet-based scalar-on-function finite mixture regression models

Classical finite mixture regression is useful for modeling the relationship between scalar predictors and scalar responses arising from subpopulations defined by the di ering associations between those predictors and responses. The classical finite mixture regression model is extended to incorporate functional predictors by taking a wavelet-based approach in which both the functional predictors...

متن کامل

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator

This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998